Non-premixed and premixed modes of Colorless Distributed Combustion (CDC) are investigated for application to gas turbine combustors. The CDC provides significant improvement in pattern factor, reduced NOx emission uniform thermal field in the entire combustion zone for it to be called as a isothermal reactor, and lower sound levels. Basic requirement for CDC is mixture preparation through good mixing between the combustion air and product gases so that the reactants are at much higher temperature to result in hot and diluted oxidant stream at temperatures that are high enough to auto-ignite the fuel and oxidant mixture. With desirable conditions one can achieve spontaneous ignition of the fuel with distributed combustion reactions. Distributed reactions can also be achieved in premixed mode of operation with sufficient entrainment of burned gases and faster turbulent mixing between the reactants. In the present investigation two non-premixed combustion modes and one premixed combustion mode that provide potential for CDC is examined. In all the configurations the air injection port is positioned at the opposite end of the combustor exit, whereas the location of fuel injection ports is changed to give different configurations. The results are compared for global flame signatures, exhaust emissions, acoustic signatures, and radical emissions using experiments and flow field, gas recirculation and mixing using numerical simulations. Ultra low NOx emissions are observed for both the premixed and non-premixed combustion modes, and almost colorless flames (no visible flame color) have been observed for the premixed combustion mode. The non-premixed mode was also provided near colorless distributed combustion. The reaction zone is observed to be significantly different in the two non-premixed modes.
Skip Nav Destination
Close
Sign In or Register for Account
ASME 2010 International Mechanical Engineering Congress and Exposition
November 12–18, 2010
Vancouver, British Columbia, Canada
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4444-1
PROCEEDINGS PAPER
Non-Premixed and Premixed Colorless Distributed Combustion for Gas Turbine Application
Vaibhav Arghode,
Vaibhav Arghode
University of Maryland, College Park, MD
Search for other works by this author on:
Ashwani K. Gupta
Ashwani K. Gupta
University of Maryland, College Park, MD
Search for other works by this author on:
Vaibhav Arghode
University of Maryland, College Park, MD
Ashwani K. Gupta
University of Maryland, College Park, MD
Paper No:
IMECE2010-38209, pp. 743-754; 12 pages
Published Online:
April 30, 2012
Citation
Arghode, V, & Gupta, AK. "Non-Premixed and Premixed Colorless Distributed Combustion for Gas Turbine Application." Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Volume 7: Fluid Flow, Heat Transfer and Thermal Systems, Parts A and B. Vancouver, British Columbia, Canada. November 12–18, 2010. pp. 743-754. ASME. https://doi.org/10.1115/IMECE2010-38209
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close
Sign In
5
Views
0
Citations
Related Proceedings Papers
Related Articles
CFD Prediction of Partload CO Emissions Using a Two-Timescale Combustion Model
J. Eng. Gas Turbines Power (July,2011)
Design Improvement Survey for NO x Emissions Reduction of a Heavy-Duty Gas Turbine Partially Premixed Fuel Nozzle Operating With Natural Gas: Numerical Assessment
J. Eng. Gas Turbines Power (January,2016)
GAS TURBINE COMBUSTION—Alternative Fuels and Emissions
J. Eng. Gas Turbines Power (November,2010)
Related Chapters
Influence of Aethylether on Combustion and Emission Characteristics of Dieselbiodiesel Mixture Fuel
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration