Cooling methods are needed for gas turbine blade tips that are exposed to high temperature gas. A common way to cool the blade and its tip is to design serpentine passages with 180-deg turn under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip lifetime. This paper presents numerical predictions of turbulent heat transfer through two-pass channels with and without guide ribs (guide vanes) placed in the turn regions using RANS turbulence modeling. The effects of adding guide ribs on the tip-wall heat transfer enhancement and the channel pressure drop have been analyzed. The inlet Reynolds numbers are ranging from 100,000 to 600,000, and the rib cross-section blockage ratio (rib height to channel height, 2e/H) is 0.182. The detailed fluid flow and heat transfer over the tip-wall are presented. The overall performances of three two-pass channels are evaluated and compared. It is found that the tip heat transfer coefficients of the channels with guide ribs are 20%∼50% higher than that of a channel without guide ribs. The presence of guide ribs could lead to an increased (about 15%) or decreased (up to about 12%) pressure drop, depending upon the geometry and placement of guide ribs. It is suggested that the usage of guide ribs is a suitable way to improve the flow structure and augment the blade tip heat transfer, but is not the most effective way to augment tip-wall heat transfer compared to the augmentation by surface modifications imposed on the tip directly.

This content is only available via PDF.
You do not currently have access to this content.