An understanding of the fundamental mechanisms involved in the interaction between cavitation bubbles and structures is of importance for many applications involving cavitation erosion. Generally, the final stage of bubble collapse is associated with the formation of a high-speed reentrant liquid jet directed towards the solid surface. Local forces associated with the collapse of such bubbles can be very high and can exert significant loads on the materials. This formation and impact of liquid jet is an area of intense research. Under some conditions the presence of gravity and other nearby boundaries and free surfaces alters the jet direction and need to be understood, especially that in the laboratory, small scale tests in finite containers have these effects inherently present. In this work, experiments and numerical simulations of the interaction between a vertical wall and a bubble were carried out using Dynaflow’s three-dimensional code, 3DynaFS_Bem©, which models the unsteady dynamics of a liquid flow including the presence of highly non-linear time evolving gas-liquid interfaces. The numerical predictions were validated using scaled experiments carried out using spark generated bubbles. These spark bubble tests produced high fidelity test data that properly scale the fluid dynamics as long as the geometric non-dimensional parameters, gravity and time are properly scaled. The use of high speed cameras allowing framing rates as high as 50,000 frames per second to photograph the bubbles produced high quality observations of bubble dynamics including clear visualizations of reentrant jet formation inside the bubble. Such observations were very useful in developing and validating the numerical models. The cases studied showed very good correlation between the numerical simulations and the experimental observations and allowed development of predictive rules for the re-entrant jet characteristics, including jet angle and various definitions of the jet speed.
Skip Nav Destination
ASME 2010 International Mechanical Engineering Congress and Exposition
November 12–18, 2010
Vancouver, British Columbia, Canada
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4444-1
PROCEEDINGS PAPER
Numerical and Experimental Study of the Interaction of a Spark-Generated Bubble and a Vertical Wall
Arvind Jayaprakash,
Arvind Jayaprakash
Dynaflow Inc., Jessup, MD
Search for other works by this author on:
Georges Chahine,
Georges Chahine
Dynaflow Inc., Jessup, MD
Search for other works by this author on:
Chao-Tsung Hsiao
Chao-Tsung Hsiao
Dynaflow Inc., Jessup, MD
Search for other works by this author on:
Arvind Jayaprakash
Dynaflow Inc., Jessup, MD
Georges Chahine
Dynaflow Inc., Jessup, MD
Chao-Tsung Hsiao
Dynaflow Inc., Jessup, MD
Paper No:
IMECE2010-40515, pp. 1121-1132; 12 pages
Published Online:
April 30, 2012
Citation
Jayaprakash, A, Chahine, G, & Hsiao, C. "Numerical and Experimental Study of the Interaction of a Spark-Generated Bubble and a Vertical Wall." Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Volume 7: Fluid Flow, Heat Transfer and Thermal Systems, Parts A and B. Vancouver, British Columbia, Canada. November 12–18, 2010. pp. 1121-1132. ASME. https://doi.org/10.1115/IMECE2010-40515
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Assessment of Cavitation Erosion With a URANS Method
J. Fluids Eng (April,2014)
A Cavitation Erosion Model for Ductile Materials
J. Fluids Eng (September,2002)
Incubation Time and Cavitation Erosion Rate of Work-Hardening Materials
J. Fluids Eng (February,2009)
Related Chapters
Helping Experts Communicate with Their Public (PSAM-0013)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
The Acoustic Pressure Generated by the Non-Spherical Collapse of Laser-Induced Cavitation Bubbles Near a Rigid Boundary
Proceedings of the 10th International Symposium on Cavitation (CAV2018)