This paper reports the design and performance of a novel photobioreactor that decreases the water requirements of algae cultivation and energy requirements of harvesting and downstream processing for biofuel production compared to conventional technologies. The photobioreactor cultivates algae as a biofilm, immobilized on carbonated concrete surface. In this study the well known lipid producer Botryococcus braunii was used. The nutrient solution was flown over the surface to enhance the mass transfer of nutrients in and metabolites out of the algae biofilm. The prototype featured a footprint area of 0.275 m2 and has been operated for 35 days. The algae concentration in the photobioreactor reached 30.73 kg/m3 with a maximum total lipid content of 12.3% by dry weight. The water requirement for cultivation was reduced up to by about 41.58 times and energy required for nutrient delivery was estimated to be reduced by about 230 times with respect to raceway ponds.

This content is only available via PDF.
You do not currently have access to this content.