Strategies based on the principle of heat flow and temperature control were implemented, and experimentally tested, to increase the sensitivity of a Tian-Calvet microcalorimeter for measuring heats of adsorption. Here, both heat-flow and temperature control schemes were explored to diminish heater-induced thermal variations within the heat sink element hence obtaining less noise in the baseline signal. PID controllers were implemented within a closed-loop system to perform the control actions in an calorimetric setup. The experimental results demonstrate that the heat flow control strategy provided a better baseline stability when compared to the temperature control. A modified control strategy is then suggested to maintain a stable core temperature and signal noise level in the system.

This content is only available via PDF.
You do not currently have access to this content.