A novel methodology is developed for local entropy generation analysis of turbulent flows using large eddy simulation (LES). The entropy transport equation is introduced in LES. The filtered form of this equation includes the unclosed subgrid scale entropy generation effects. The closure is based on the filtered density function (FDF) methodology, extended to include the transport of entropy. An exact transport equation is derived for the FDF. The unclosed terms in this equation is modeled by considering a system of stochastic differential equations. LES/FDF is employed to simulate a turbulent shear layer involving transport of mass, energy and entropy. The local entropy generation effects are obtained from the FDF and analyzed. It is shown that the dominant contribution to entropy generation in this flow is due to the combined effects of energy transfer by heat interaction and mass diffusion.

This content is only available via PDF.
You do not currently have access to this content.