Gasification of biomass has become an area of key interest as it is a reasonably quick and direct way of converting the material into a fuel source that works directly in many industrial systems. The purpose of the present work is to explore gasification and pyrolysis behavior of corn kernels and paper sludge. For both corn kernels and paper sludge, low temperature gasification behavior was studied. Due to corn’s low ash fusion temperature, ∼1400 C, gasification is typically undertaken at temperatures near 1000 C, and most of the chemical mechanisms are similar down to ∼500 C. Here, tests were performed with pyrolysis temperatures from 400–800°C, at 1 atm and a rapid heating rate. The evolution of CO and CO2 were measured throughout the pyrolysis process. Results show a direct correlation between temperature and equivalence ratios and the composition of the gas byproduct for both biomasses. CO production increases with an increase in temperature while CO2 shows no temperature correlation. No hydrogen was observed, as would be expected for the short experimental residence time (0.2 seconds).

This content is only available via PDF.
You do not currently have access to this content.