In this study, the change of the resistivity of the CNT-dispersed resin was analyzed by applying a quantum chemical molecular dynamics and the first principle calculation. Various combinations of double-walled carbon nanotube structures were modeled for the analysis. The change of the band structure was calculated by changing the amplitude of the applied strain. It was found in some cases that the band structure changes drastically from a metallic structure to a semiconductive structure, and this result clearly indicated that the electronic conductivity of this MWCNT decreased significantly under tensile strain. It was also found that further application of the strain made a band gap in the band structure. This result indicated that the metallic CNT changes a semiconductive CNT due to the applied strain. The effect of the diameter of the zigzag type CNT on the critical strain of buckling deformation was analyzed under a uni-axial strain. In this analysis, the aspect ratio of each structure was fixed at 10. It was found that the critical strain decreased monotonically with the increase of the diameter. This was because that the flexural rigidity of a cylinder decreased with the increase of its diameter when the thickness of the wall of the cylinder is fixed. It was found that the critical strain decreased drastically from about 5% to 0.5% when the aspect ratio was changed from 10 to 30. Since the typical aspect ratio of CNTs often exceeds 1000, most CNTs show buckling deformation when an axial compressive strain was applied to the CNTs. Finally, the shape of six-membered ring of the CNT was found to be the dominant factor that determines the electronic band structure of a CNT. Next, the change of the band structure of a graphene sheet was analyzed by applying the abinitio calculation (Density functional theory). It was found that the fluctuation of the atomic distance among the six-membered ring is the most dominant factor of the electronic band structure. When the fluctuation exceeded about 10%, band gap appeared in the deformed six-membered ring, and thus, the electronic conductivity of the graphene sheet changes from metallic one to semiconductive one. It is therefore, possible to predict the change of the electronic conductivity of a CNT by considering the local shape of a six-membered ring in the deformed CNT.
Skip Nav Destination
ASME 2010 International Mechanical Engineering Congress and Exposition
November 12–18, 2010
Vancouver, British Columbia, Canada
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4428-1
PROCEEDINGS PAPER
Nanostructure Dependence of the Electronic Conductivity of Carbon Nanotubes and Graphene Sheets
Masato Ohnishi,
Masato Ohnishi
Tohoku University, Sendai, Miyagi, Japan
Search for other works by this author on:
Katsuya Ohsaki,
Katsuya Ohsaki
Tohoku University, Sendai, Miyagi, Japan
Search for other works by this author on:
Yusuke Suzuki,
Yusuke Suzuki
Tohoku University, Sendai, Miyagi, Japan
Search for other works by this author on:
Ken Suzuki,
Ken Suzuki
Tohoku University, Sendai, Miyagi, Japan
Search for other works by this author on:
Hideo Miura
Hideo Miura
Tohoku University, Sendai, Miyagi, Japan
Search for other works by this author on:
Masato Ohnishi
Tohoku University, Sendai, Miyagi, Japan
Katsuya Ohsaki
Tohoku University, Sendai, Miyagi, Japan
Yusuke Suzuki
Tohoku University, Sendai, Miyagi, Japan
Ken Suzuki
Tohoku University, Sendai, Miyagi, Japan
Hideo Miura
Tohoku University, Sendai, Miyagi, Japan
Paper No:
IMECE2010-37277, pp. 437-443; 7 pages
Published Online:
April 30, 2012
Citation
Ohnishi, M, Ohsaki, K, Suzuki, Y, Suzuki, K, & Miura, H. "Nanostructure Dependence of the Electronic Conductivity of Carbon Nanotubes and Graphene Sheets." Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Volume 4: Electronics and Photonics. Vancouver, British Columbia, Canada. November 12–18, 2010. pp. 437-443. ASME. https://doi.org/10.1115/IMECE2010-37277
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Influence of Carbon Nanoparticles Additives on Nanosilver Joints in LTJT Technology
J. Electron. Packag (September,2021)
Nano Electro Mechanics of Semiconducting Carbon Nanotube
J. Appl. Mech (July,2002)
An Equivalent Orthotropic Representation of the Nonlinear Elastic Behavior of Multiwalled Carbon Nanotubes
J. Eng. Mater. Technol (July,2007)
Related Chapters
Glossary of Terms
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Molecular Dynamics Study of Mechanical Properties of Carbon-Nanotube Reinforced LY556 Composites
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)