Breast elastography has been proposed as a novel imaging modality for breast cancer detection and assessment. As pathologies are known to change tissue stiffness significantly, the idea behind elastography is using tissue stiffness as imaging contrast agent. Evidence in the literature suggests that various pathological tissues exhibit different mechanical stiffness characteristics. Therefore, in addition to the ability of detecting the presence of abnormalities, elastography is capable of pathological tissue classification. In this work, we propose a novel nonlinear (hyperelastic) breast elastography system which takes into account tissue large deformations resulting from mechanical stimulation. To idealize breast tissue, we use the well-known Veronda-Westman model as the forward problem solution in the hyperelastic parameter reconstruction process. This process involves tissue mechanical stimulation, displacement data acquisition followed by solving an inverse problem to find the hyperelastic parameters iteratively. These parameters are useful for in vivo tumor classification, image guided surgery and Virtual Reality systems development. Due to the exponential form of the Veronda-Westman function, however, this model cannot be solved using inverse-matrix techniques. Therefore, we have developed a novel technique to solve the corresponding nonlinear inverse problem. To validate the technique, we used an experimental breast tissue mimicking phantom that was made up of PVA-C (Polyvinyl Alcohol), which exhibits nonlinear mechanical behavior. Displacement data was acquired using a combination of Time Domain Cross-Correlation Estimation (TDE) and Horn-Schunck Optical Flow techniques.
Skip Nav Destination
ASME 2010 International Mechanical Engineering Congress and Exposition
November 12–18, 2010
Vancouver, British Columbia, Canada
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4426-7
PROCEEDINGS PAPER
A Fast Constrained Nonlinear Elastography Technique: Polyvinyl Alcohol (PVA) Phantom Study Using the Veronda-Westman Model
M. Amooshahi,
M. Amooshahi
The University of Western Ontario, London, ON, Canada
Search for other works by this author on:
A. Samani
A. Samani
The University of Western Ontario, London, ON, Canada
Search for other works by this author on:
M. Amooshahi
The University of Western Ontario, London, ON, Canada
A. Samani
The University of Western Ontario, London, ON, Canada
Paper No:
IMECE2010-37740, pp. 815-824; 10 pages
Published Online:
April 30, 2012
Citation
Amooshahi, M, & Samani, A. "A Fast Constrained Nonlinear Elastography Technique: Polyvinyl Alcohol (PVA) Phantom Study Using the Veronda-Westman Model." Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Volume 2: Biomedical and Biotechnology Engineering. Vancouver, British Columbia, Canada. November 12–18, 2010. pp. 815-824. ASME. https://doi.org/10.1115/IMECE2010-37740
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
A New Actuation System With Simulated Electrocardiogram Signal for MR Elastography
J. Med. Devices (June,2010)
Advances in Finite Element Simulations of Elastosonography for Breast Lesion Detection
J Biomech Eng (August,2011)
Measurement of the Dynamic Shear Modulus of Mouse Brain Tissue In Vivo by Magnetic Resonance Elastography
J Biomech Eng (April,2008)
Related Chapters
Using Statistical Learning Theory to Improve Treatment Response for Metastatic Colorectal Carcinoma
Intelligent Engineering Systems through Artificial Neural Networks, Volume 20
Experimental Studies
Nanoparticles and Brain Tumor Treatment
Introduction
Nanoparticles and Brain Tumor Treatment