Novel polypyrrole-polylactide blends were fabricated and characterized using compression molding, salt leaching, and in situ polymerization. Open-porous polylactide samples were fabricated using compression molding and salt leaching techniques with varying salt-to-polymer mass ratios of 3:1, 6:1, and 9:1. The samples then underwent in situ polymerization of pyrrole and iron (III) chloride to obtain a uniform coating of polypyrrole. Characterization of these novel composites comprised of their physical, mechanical, and electrical properties. With increasing salt-to-polymer mass ratio, it was found that the relative density decreased, the open porosity increased while pore size and pore density generally remained independent. The polypyrrole coating did not have a significant effect on the structure of the pore network. Microscopic polypyrrole nodules were observed to be uniformly coated on the surface and sub-surface of the composites. The compressive modulus decreased with increasing salt-to-polymer mass ratios. In addition, the modulus of the coated 3:1 salt-to-polymer mass ratio sample was twice the value obtained for the uncoated sample while the modulus values for the 6:1 and 9:1 samples did not significantly change. The conductivity increased as the salt-to-polymer mass ratio increased. The relationships observed between the structure and resulting properties provided the basis for future development and characterization of these novel porous composites.

This content is only available via PDF.
You do not currently have access to this content.