In present study, stretching dynamics of electrically tethered λ-DNA (48.5kbp) in SiO2 nanochannels has been investigated. At high electrical fields (above 20kV/m), elongations of electrically tethered DNA molecules were observed. At high E-fields, DNAs were tethered in nanochannels and were spontaneously elongated along the nanochannels up to about 90 percent of its contour length. With E-field turned off, the measured relaxation time was about 10 sec from stretching with 20kV/m. In current study, observed behaviors of DNA molecules in nanochannels were explained by field-induced dielectrophoretic DNA trap due to the particular cross-sectional geometry of nanochannels. Also the elongation ratio between 20kV/m and 60kV/m cases and the effect of E-field distribution in the transverse plane on field-induced dielectrophoretic tethering force are discussed based on “worm-like chain” model. The FEM simulation was done to verify induced dielectrophoretic tethering force into the nanohorn.

This content is only available via PDF.
You do not currently have access to this content.