Progress in aero-engines and land-based gas turbines is continuously linked with a rise of the operating temperature. TBCs are multilayered structures which function together to effectively lower the temperature of its load-bearing superalloy substrate while simultaneously providing oxidation protection against high temperature combustion environments during operation. They typically comprise of a ceramic top coat for thermal insulation and a metallic bond coat that provides oxidation/corrosion resistance and enhances the adhesion of the YSZ to the superalloy substrate. Due to high-temperature oxidation of the bond coat, a thermally grown oxide (TGO) scale of continuous Al2O3 is formed between the ceramic top coat and the bond coat. The formation and growth of the TGO increases the mismatch of thermal expansion coefficients among the multilayered TBC and induce high thermal stresses leading to spallation of the YSZ coat from the underlying metal. Hence, nondestructive diagnostic tools that could reliably probe the subsurface damage state of TBCs are essential to take full advantage of these systems. In this contribution, a new concept of multiscale NDT system is presented. The instrument uses a combination of imaging-based methods with photoluminescence piezospectroscopy, a laser-based method. Imaging-based methods like mid-infrared reflectance, laser optical backscatter and infrared tomography were used to predict the overall lifetime of the coated component. When TBCs approach the end of life, micro-crack nucleation and propagation at the top coat/bond coat interface increases the amount of reflected light. This rise in reflectance was correlated with the lifetime of the component using a neural network that merges the mean and standard deviation value of the gray level. Photoluminescence piezospectroscopy was subsequently used to give information about the structural integrity of the hot spots identified in the image analysis. This laser-based technique measures in-situ the residual stress in the TGO at room temperature. Damage leads to a relaxation of the local stress which is in turn reflected in the luminescence spectrum shape. However, presently there is no agreement on the best spectral parameters that should be used as a measure of the damage accumulation in the coatings. Therefore, the evolution of luminescence spectrum from as-manufactured to critically damaged TBCs was determined using the finite element method. This approach helped to identify the most suitable spectral parameters for damage detection, improving the reliability of photoluminescence piezospectroscopy as a failure assessment tool for TBCs.

This content is only available via PDF.
You do not currently have access to this content.