Chatter is caused by two main mechanisms: the regenerative waviness and the mode coupling. Both of these two chatter mechanisms always exist simultaneously, but most studies only discuss the regenerative chatter behavior. The purpose of this paper is to investigate the mode coupling behavior in end milling process. A mechanical model considering both of the regenerative and mode coupling effects is then constructed to simulate the milling dynamics. It is shown that the stability of milling is dominated by the eigenvalues of the process matrix and the structure vibration trajectories are affected by the eigenvectors of the process matrix. The rotation direction of chatter vibration is an important feature to determine whether mode coupling chatter occurs or not. By analyzing vibration trajectories, this paper then shows that chatter vibration will rotate in the direction which periodically accumulates the vibration energy. Finally, some methods for adjusting the cutting conditions to avoid the mode coupling chatter are proposed.

This content is only available via PDF.
You do not currently have access to this content.