In the present paper the dynamic stability of circular cylindrical shells is investigated; the combined effect of compressive static and periodic axial loads is considered. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration; Lagrange equations are used to reduce the nonlinear partial differential equations to a set of ordinary differential equations. The dynamic stability is investigated using direct numerical simulation and a dichotomic algorithm to find the instability boundaries as the excitation frequency is varied; the effect of geometric imperfections is investigated in detail. The accuracy of the approach is checked by means of comparisons with the literature.

This content is only available via PDF.
You do not currently have access to this content.