This paper proposes a new approach for the anti-swing trajectory control of overhead cranes that allows simultaneous high-speed load hoisting. The objective of this study is to design an anti-swing trajectory control scheme that is robust to unavoidable mechanical inaccuracies and installation errors such as locally sloped trolley rails. First, a coupled sliding surface is defined based on the load-swing dynamics, and then the stability of the coupled sliding surface is shown to be equivalent to that of trolley tracking errors. Next, a robust anti-swing trajectory control scheme, minimizing the coupled sliding surface asymptotically to zero, is designed based on the trolley and load-hoisting dynamics. Finally, the proposed control is extended to an adaptive scheme. In this study, the Lyapunov stability theorem is used as a mathematical design tool. The proposed control guarantees asymptotic stability of the anti-swing trajectory control while keeping all internal signals bounded. The proposed control provides a practical solution for the robustness problem caused by the usual mechanical inaccuracies and installation errors in application. The proposed control also provides clear gain-tuning criteria for easy application. The validity of the theoretical results is shown by computer simulation.

This content is only available via PDF.
You do not currently have access to this content.