Hummingbirds and some insects exhibit “Figure-8” flapping motion that allows them to go through a variety of maneuvers including hovering. Understanding the flight characteristics of Figure-8 flapping motion can potentially yield the foundation of flapping wing UAVs that can experience similar maneuverability. In this paper, a mathematical model of the dynamic and aerodynamic forces associated with Figure-8 motion generated by a spherical four bar mechanism is developed. For validation, a FWMAV prototype with the wing attached to a coupler point and driven by a DC servo motor is created for experimental testing. Wind tunnel testing is conducted to determine the coefficients of flight and the effects of dynamic stall. The wing is driven at speeds up to 12.25 Hz with results compared to that of the model. The results indicate good correlation between mathematical model and experimental prototype.

This content is only available via PDF.
You do not currently have access to this content.