In this paper, we propose a unique, decoupled Three Degree-of-Freedom (DOF) parallel wrist. The condition required for synthesizing a fully isotropic parallel mechanism is obtained based on the physical meaning of the row vector in the Jacobian Matrix. Specifically, an over-constrained spherical 3-DOF parallel mechanism is presented and the modified structure, which avoids the redundant constraints, is also introduced. The proposed manipulator is capable of decoupled rotational motions around the x, y and z axes and contains an output angle that is equal to the input angle. Since this device is analyzed with the Jacobian Matrix, which is constant, the mechanism is free of singularity and maintains homogenous stiffness over the entire workspace.

This content is only available via PDF.
You do not currently have access to this content.