Drilling is a highly complex machining process coupled with thermo-mechanical effect. Both the rapid plastic deformation of the workpiece and the friction along the drill-chip interface can contribute to localized heating and increasing temperature in the workpiece and tool. The cutting temperature at the tool-chip interface plays an important role in determining the tool thermal wear. This in turn affects the dimensional accuracy of the workpiece and the tool life of drill. A new embedded heat pipe technology has been proven to be able to effectively not only remove the heat generated at the tool-chip interface in drilling, but also minimize pollution and contamination of the environment caused by cutting fluids. Less tool wear can then be achieved, thus prolonging the tool life. 3D Finite Element method using COSMOS/works is employed to study coupled effects of thermal, structural static and dynamic analyses in a drilling process to check the feasibility and effectiveness of the heat pipe drill. Four different cases, solid drill without coolant, solid drill with coolant, heat pipe drill, and heat pipe drill with coolant, are explored, respectively. The results from this study can be used to define geometric parameters for optimal designs.

This content is only available via PDF.
You do not currently have access to this content.