This paper reports an experimental and numerical study of evaporation and cooling of a water droplet during the early stage of depressurization in a test vessel. During the experiment, a distilled water droplet was suspended on a thermocouple, which was also used to measure the droplet center temperature, and the droplet surface temperature was captured by an infrared thermograph. Experimental data indicated a large temperature difference within the droplet during the early stage of depressurization. A thermodynamic analysis of the experimental data found that the pressure reduction was not fast enough to induce liquid superheating and thus equilibrium evaporation was expected. A mathematical model was then constructed to simulate the droplet evaporation process. The model solves one-dimensional heat conduction equation for the temperature distribution inside the water droplet, with the convective heat transfer inside the droplet simplified through an effective conductivity factor. A simplified treatment was introduced to quantify the convective evaporation due to air movement and droplet swing induced by sudden opening of the electro-magnetic valve and the following air exiting. The model-predictions agree well with the measured temperature data, demonstrating the soundness of the present model.

This content is only available via PDF.
You do not currently have access to this content.