Telecommunication cabinets are standalone outdoor enclosures, which houses electronic components and switching devices. These electronics are powered by DC power and have backup batteries to support them in the event of power supply failure. The heat loads on these cabinets are dependent not only on the heat dissipated by the internal components but also by solar heating. Therefore the ambient temperatures around the cabinet, based on the location and time of day can vary anywhere from −40°C to +50°C. The life of a battery is dependent on the nature of the load applied, recharging conditions and most importantly ambient temperatures. Batteries supporting the cabinet electronics are either housed within the cabinet or in compartments attached to the cabinet. For long standing battery life, the temperature inside these battery compartments should be kept below 25°C [1]. Active cooling using air-conditioners are often used to achieve this, but air-conditioners are difficult to backup and are high in maintenance. A more convenient way to cool the battery compartments are to use Thermo-electric Coolers (TEC) as they are less bulky and quite. This paper discusses the validation of results of numerical modeling of a telecommunication cabinet, which uses TEC to cool its battery compartment, with experimental data for the corresponding real world model.

This content is only available via PDF.
You do not currently have access to this content.