Extended surfaces (fins) and impinging jets have been used to enhance heat transfer in many applications. In electronic thermal management, heat sinks can be designed to take advantage of the combined effect of fins and jet impingement such as jets impinging on an array of pin fins or plate fins. Significant studies have been focused on the thermal resistance, pressure drop, and the parametric effect of Reynolds number, fin thickness, density, and height. To further improve the heat sink performance, ribs/turbulators, which are widely employed in internal cooling of gas turbine blades, can be integrated into the plate fins, especially close to the surface area with low heat transfer coefficient. Numerical study is performed in this paper to examine the flow and heat transfer behavior of plate fin heat sinks cooled by an impinging jet and enhanced by the ribs. The height and shape of the turbulators are investigated to achieve the best performance. Parametric studies also include the flow Reynolds number and the spacing between the ribs. Heat transfer mechanism is explored for the confined turbulence jet with and without turbulators. It is expected that the rib enhancement can lead to a more cost-effective heat sink for cooling of electronic components. Further enhancement and optimization are discussed in this paper.

This content is only available via PDF.
You do not currently have access to this content.