One of the primary objectives of the Petroleum Institute (PI) is to prepare future mechanical engineers to assume successful career paths in the oil and gas industry. Hands-on laboratory skills play a vital role in providing students with a sound understanding of the scientific fundamentals and their application in solving real-life engineering problems. The Institute’s undergraduate mechanical engineering curriculum incorporates a one-semester junior level course titled Core Measurements, which is taught in a state-of-the-art measurement laboratory. This course includes two innovative hands-on experiments related to experimental heat transfer and fluid dynamics, with the objective of familiarizing the students, through simple projects, with the characterization of fundamental thermofluid phenomena. Each hands-on project consists of design, fabrication, data acquisition and validation of a simple experiment, with a formal report submitted on completion. Each project is undertaken by groups of four students over a five-week period. The first experiment characterizes conductive heat spread within a heat-source-substrate assembly representative of electronics cooling applications. The effects of heat source foot print, substrate geometry and thermal conductivity, and convective cooling conditions are investigated. The temperature distribution on the source and substrate surfaces are measured using thermocouples and infrared thermography, with substrate thermal resistance calculated and compared with analytical solutions. The second experiment aims to enhance student’s learning of internal pipe flows. Single phase flows in a pipe network are characterized for different flow regimes. The pipe network consists of different diameter lines with valves for regulating and directing the flow to make up various series and parallel piping combinations. The relation between head loss due to fluid friction and velocity, pressure drop empirical laws, valve characteristics, and loss coefficient of fittings are investigated using various pressure and flow measuring techniques, including laser Doppler velocimetry (LDV). The paper documents the experiments and the teaching strategy employed to integrate fundamental theories with hands-on experiences. Sample measurement and analysis results are reported. The effectiveness of the proposed experiments in enhancing student learning of thermofluids, engineering analysis of discrepancies between predictions and measurements, and project management skills is highlighted.
Skip Nav Destination
ASME 2009 International Mechanical Engineering Congress and Exposition
November 13–19, 2009
Lake Buena Vista, Florida, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4380-2
PROCEEDINGS PAPER
Innovative Thermofluids Experiments for Modern Mechanical Engineering Education Available to Purchase
Peter Rodgers,
Peter Rodgers
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Search for other works by this author on:
Shrinivas Bojanampati,
Shrinivas Bojanampati
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Search for other works by this author on:
Afshin Goharzadeh,
Afshin Goharzadeh
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Search for other works by this author on:
Arman Molki,
Arman Molki
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Search for other works by this author on:
Valerie Eveloy
Valerie Eveloy
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Search for other works by this author on:
Peter Rodgers
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Shrinivas Bojanampati
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Afshin Goharzadeh
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Arman Molki
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Valerie Eveloy
The Petroleum Institute, Abu Dhabi, United Arab Emirates
Paper No:
IMECE2009-12769, pp. 203-212; 10 pages
Published Online:
July 8, 2010
Citation
Rodgers, P, Bojanampati, S, Goharzadeh, A, Molki, A, & Eveloy, V. "Innovative Thermofluids Experiments for Modern Mechanical Engineering Education." Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Volume 7: Engineering Education and Professional Development. Lake Buena Vista, Florida, USA. November 13–19, 2009. pp. 203-212. ASME. https://doi.org/10.1115/IMECE2009-12769
Download citation file:
25
Views
Related Proceedings Papers
Related Articles
Closure to “Discussion of ‘Thermal Contact Resistance of Silicone Rubber to AISI 304 Contacts’ ” [ASME J. Heat Transfer, 122 , p. 403 (2000)]
J. Heat Transfer (May,2000)
Forced Convection in Microstructures for Electronic Equipment Cooling
J. Heat Transfer (August,1999)
Fluid Flow and Thermal Characteristics of a Microchannel Heat Sink Subject to an Impinging Air Jet
J. Heat Transfer (July,2005)
Related Chapters
The future state of content & competency-based engineering education: Lean Engineering Education
Lean Engineering Education: Driving Content and Competency Mastery
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Adding Surface While Minimizing Downtime
Heat Exchanger Engineering Techniques