Conducting polyaniline nanofibers were synthesized using chemical templating method followed by electrospun process. These nanofibers have been compared with their standard bulk counterpart and found to be stable up to 150°C. Polyaniline nanofibers prepared by electrospun method reveal high hydrogen uptake of 10wt.% at around 100°C in the first absorption run. However, in the consecutive hydrogenation and dehydrogenation cycles, the hydrogen capacity diminishes. This is most likely due to hydrogen loading into the polymer matrix, chemisorption and saturation effects. A reversible hydrogen storage capacity of ∼3–10 wt.% was also found in the new batch of electrospun nanofibers at different temperatures. The surface morphologies before and after hydrogen sorption of these PANI nanofibers encompass significant changes in the microstructure (nanofibrallar swelling effect) which clearly suggest effective hydrogen uptake and release.

This content is only available via PDF.
You do not currently have access to this content.