Fractal modeling approaches are common in the study of porous media and may be applied to describe pore surface morphology and network topology within a porous medium. Fractal structures can serve as templates for the pore structure and allow for the more detailed examination of diffusion phenomena within pore structures. In the present work a fractal pore morphology model is applied toward modeling diffusion within the electrochemically active region of an SOFC electrode. The porous electrode is separated into bulk and electrochemically active regions. Within the bulk electrode a one-dimensional model is applied based on the dusty-gas formalism assuming volume average microstructural parameters. The electrochemically active region is modeled using a two-dimensional finite element model based on a Koch pore cross-section as a fractal template. This fractal model is compared to a one-dimensional transport model applying the common assumption of a planar reaction zone. Performance variations that may exist for electrodes with the same average bulk properties are investigated in initial studies. These studies allow for exploration of the merits of fractal approaches in modeling diffusive transport within porous SOFC electrodes.

This content is only available via PDF.
You do not currently have access to this content.