There are several possible configurations and technologies for the powertrains of electric and hybrid vehicles, but most of them will include advanced energy storage systems comprising batteries and ultra-capacitors. Thus, it will be of capital importance to evaluate the power and energy involved in braking and the fraction that has the possibility of being regenerated. The Series type Plug-in Hybrid Electric Vehicle (S-PHEV), with electric traction and a small Internal Combustion Engine ICE) powering a generator, is likely to become a configuration winner. The first part of this work describes the model used for the quantification of the energy flows of a vehicle, following a particular route. Normalised driving-cycles used in Europe and USA and real routes and traffic conditions were tested. The results show that, in severe urban driving-cycles, the braking energy can represent more than 70% of the required useful motor-energy. This figure is reduced to 40% in suburban routes and to a much lower 18% on motorway conditions. The second part of the work consists on the integration of the main energy components of an S-PHEV into the mathematical model. Their performance and capacity characteristics are described and some simulation results presented. In the case of suburban driving, 90% of the electrical motor-energy is supplied by the battery and ultra-capacitors and 10% by the auxiliary ICE generator, while on motorway these we got 65% and 35%, respectively. The simulations also indicate an electric consumption of 120 W.h/km for a small 1 ton car on a suburban route. This value increases by 11% in the absence of ultra-capacitors and a further 28% without regenerative braking.

This content is only available via PDF.
You do not currently have access to this content.