Static and fatigue structural testing of wind turbine blades provides manufacturers with quantitative details in order to improve designs and meet certification requirements. Static testing entails applying extreme load cases through a combination of winches and weights to determine the ultimate strength of the blade while fatigue testing entails applying the operating design loads through forced hydraulics or resonant excitation systems over the life cycle of the blade to determine durability. Recently, considerable efforts have been put forth to characterize the reactions of wind turbine blades during structural testing in order to develop load and deflection predictions for the next generation of blade test facilities. Incorporating years of testing experience with historical test data from several wind turbine blades, curve fits were developed to extrapolate properties for blades up to one hundred meters in length. Furthermore, conservative assumptions were employed to account for blade variations due to inconsistent manufacturing processes. In short, this paper will outline the predictions of wind turbine blade loads and deflections during static and fatigue structural testing.

This content is only available via PDF.
You do not currently have access to this content.