The body armor can protect the soldiers from penetrating and blunt injury during the war, but its prevention standard lacks the biomedical validity. To improve the protection gear and prevention strategies, we need valid input data in mathematical modeling at different impact loading conditions. Our aim is to provide the valid data for the computer modeling and simulation based on the injury levels. Dynamic mechanical behaviors of kidney tissues are needed as input data for the impact modeling of penetrating injury. Moreover, the knowledge of mechanical responses of kidney tissues is important for diagnosis, surgical simulation and training purposes. This work investigates the impact of strain rate effect of kidney tissue under compression. The dynamic response of kidney tissues is studied using Split Hopkinson pressure bar (SHPB) technique. We have modified the classical SHPB technique to characterize the mechanical behavior of kidney tissues at high strain-rate ranging from 1000 s−1 to 3000 s−1 by incorporating quratz-crystal technique and hollow transmission bar. We have also studied the quasi-static response of kidney tissues at three different strain-rates of 0.01 s−1, 0.1 s−1 and 1 s−1 as well as the intermediate strain rate at two different strain rates of 10 s−1 and 100s−1. The experiment results indicate the non-linear stress-strain response of materials. The kidney tissue stiffens evidently with increasing strain-rate.

This content is only available via PDF.
You do not currently have access to this content.