Stents are commonly used to restore blood flow in patients with severe coronary artery disease. Local hemodynamic variables, as wall shear stress, have an important role in the restenosis and their distribution depends on the stent geometry. The objective of the present study is to carry out CFD simulations in a realistic 3D geometry of a coronary stent in physiological conditions. A comparison is performed between two reconstructed stents, made of 12 rings and similar to the real coronary ones, which differ by the position of the struts, where the first type is with closed cells and the second one with open cells. The artery is modeled as a cylinder with rigid walls and the blood is assumed as incompressible Newtonian fluid in laminar flow with constant physical properties. The commercial computational fluid dynamic code FLUENT is used with a mesh composed of non uniform tetrahedrons. The simulations are performed in steady and unsteady state. Wall shear stresses, WSS, as well as its time variations, are investigated in unsteady state with the conclusion that the stent with closed cells have a better fluid dynamic behavior.

This content is only available via PDF.
You do not currently have access to this content.