Currently, there are a large number of level crossings on railway lines. These signaling facilities are necessary from the point of view of railway lines and also from the traffic of vehicles and people crossing them. This signaling system is built on a number of elements such as acoustic and lighting signals—barriers that prevent cars & pedestrians from accessing rail tracks. These level crossing facilities operate autonomously and they are not part of the security facilities (interlockings) when planning or building stages. Therefore, a major constraint for level crossings is the lack of a feasible electric supply primarily because of the high cost of cable running due to the great difficulty of transporting this energy to some areas. This high cost will make installation unprofitable where there is light traffic in trains and/or pedestrians and vehicles. This paper proposes that a solar photovoltaic supply system would make installation cost efficient instead of cable running. The research shows that the sizing method for this power supply and the measuring tool detailed below ease calculations. This proposed system provides both economical and environmental benefits. These benefits positively impact those areas where traditional cable supply is difficult to provide. In order to size the electrical feeding system for these level crossings facilities two calculations are necessary: 1) the calculation of the daily incident solar irradiation into a horizontal surface and, 2) the location where the facility is going to be set. The calculation of the theoretical energy consumption is determined by the integral of the instantaneous electrical power consumption of the system. Thus, the proposed solution in the paper provides a cost reduction to deploy level crossing facilities crossing existing railway lines. It allows the installation of level crossings with increased security features necessary for the correct signaling from the basic level crossing to configurations such as acoustic and light signals, or even protective barriers. These elements provide more information and safety to cars and pedestrians concerning train crossing, decreasing the risk of accidents. Additionally, this power supply system can be deployed easily and can be adapted to any topology minimizing costs. Furthermore these systems are environmentally friendly as they clear away the impact of the electrical consumption of the facility from the network and do not need cable running in order to transport this energy to the level crossing facility.

This content is only available via PDF.
You do not currently have access to this content.