In the last years a great effort has been devoted to the development of autonomous vehicles able to drive in a high range of speeds in semi-structured and unstructured environments. This article presents and discusses the software framework for Hardware-In-the-Loop (HIL) and Software-In-the-Loop (SIL) analysis that has been designed for developing and testing of control laws and mission functionalities of semi-autonomous and autonomous vehicles. The ultimate goal of this project is to develop a robotic system, named RUMBy, able to autonomously plan and execute accurate optimal manoeuvres both in normal and in critical driving situations and to be used as a test platform for advanced decision and autonomous driving algorithms. RUMBy’s hardware is a 1:6 scale gasoline engine R/C car with onboard telemetry and control systems. RUMBy’s software consists of three main modules: the manager module that coordinates the other modules and take high level decision; the motion planner module which is based on a Nonlinear Receding Horizon Control (NRHC) algorithm; the actuation module that produces the driving command for the vehicle. The article describes the details of RUMBy architecture and discusses its modular configuration that easily allows HIL and SIL tests.

This content is only available via PDF.
You do not currently have access to this content.