Corrosion and cell culture experiments were performed to evaluate magnesium (Mg) as a possible biodegradable implant material. The corrosion current and potential of a Mg disk were measured in different physiological solutions. The corrosion currents in cell culture media were found to be higher than in deionized water, which verifies that corrosion of Mg occurs faster in chloride solution. Weight loss, open-circuit potential, and electrochemical impedance spectroscopy measurements were also performed. The Mg specimens were also characterized using an environmental scanning electron microscope and energy-dispersive x-ray analysis (EDAX). The x-ray analysis showed that in the cell culture media a passive interfacial layer containing oxygen, chloride, phosphate, and potassium formed on the samples. U2OS cells were then co-cultured with a Mg specimen for up to one week. Based on visual observation, cell growth and function were not significantly altered by the presence of the corroding Mg sample. These initial results indicate that Mg may be suitable as a biodegradable implant material. Future work will develop small sensors to investigate interfacial biocompatibility of Mg implants.

This content is only available via PDF.
You do not currently have access to this content.