Arrays of nanoholes in metal films present several opportunities as surface based sensors in lab-on-chip systems. Metallic nanohole arrays support surface electromagnetic waves that enable enhanced transmission through the holes and have been harnessed for chemical and biological sensing. Nanohole array based sensing performed to date has involved nanoholes that end shortly beyond the metallic film layer on a substrate such as glass. Such dead-ended holes fail to harness the potential of through-hole nanohole arrays including enhanced transport of reactants to the active area and a solution sieving action that is unique among surface-based sensing methods. In this work we investigate the potential of a flow-through-array sensing format.

This content is only available via PDF.
You do not currently have access to this content.