Different types of fillers with high electrical and thermal conductivities, e.g. graphite and alumina, have been added to adhesive polymers to create composite materials with improved mechanical and electrical properties. Previous modeling efforts have found that it is relatively difficult to predict the effective thermal conductivity of a composite polymeric material when incorporated with large volume content of fillers. We have performed comprehensive computational analysis that models the thermal contacts between fillers. This unique setup can capture the critical heat conduction path to obtain the effective thermal conductivity of the composite materials. Results of these predictions and its comparison with experimental data will be presented in this paper.

This content is only available via PDF.
You do not currently have access to this content.