We study the dynamic behavior of an electrostatic MEMS resonator using a model that accounts for the system nonlinearities due to mid-plane stretching and electrostatic forcing. The partial-differential-integral equation and associated boundary conditions representing the system dynamics are discretized using the Differential Quadrature Method (DQM) and the Finite Difference Method (FDM) for the space and time derivatives, respectively. The resulting model is analyzed to determine the periodic orbits of the resonator and their stability. Simultaneous resonances are identified for large orbits. Finally, we develop a first-order approximation of the microbeam dynamic response, which reveals an erosion of the basin of attraction of the stable orbits that depends heavily on the amplitude and frequency of the AC excitation. Simulations show that the smoothness of the boundary of the basin of attraction can be lost to be replaced by fractal tongues, which increase the sensitivity of the microbeam response to initial conditions. As a result, the locations of the stable and unstable fixed points are likely to be disturbed.

This content is only available via PDF.
You do not currently have access to this content.