We study the feasibility of employing subharmonic resonance of order one-half to create a bandpass filter using two clamped-clamped microbeam resonators connected by a weak coupling beam. We discretize the distributed-parameter system using the Galerkin procedure to obtain a reduced-order model composed of two nonlinear coupled ODEs. It accounts for geometric and electric nonlinearities as well as the coupling between these two fields. Using the method of multiple scales, we determine four first-order nonlinear ODEs describing the amplitudes and phases of the modes. We use these equations to determine closed-form expressions for the static and dynamic deflections of the structure. The basis functions in the discretization are the linear undamped global mode shapes of the unactuated structure. We found that we can not produce a single-valued response for small excitation amplitudes. So that, it is impractical to use a single structure made of two mechanically coupled beams excited subharmonically in filtration. But we can use a pair of structures to build a bandpass filter by operating one in the softening domain and the other in the hardening domain and, more importantly, implementing processing logic and hardware schemes. However, the complications brought about by mechanically coupling of two microbeams can be avoided by using a pair of uncoupled beams. This makes the fabrication and modeling processes much easier. Using subharmonic excitation with mechanically uncoupled microbeams to realize bandpass filters is the subject of the next work.

This content is only available via PDF.
You do not currently have access to this content.