Polymeric nanofibers are finding increasing number of applications and hold the potential to revolutionize diverse fields such as tissue engineering, smart textiles, sensors, and actuators. Aligning and producing long smooth, uniform and defect-free fibers with control on fiber dimensions at the submicron and nanoscale has been challenging due to fragility of polymeric materials. Besides fabrication, the other challenge lies in the ability to characterize these fibers for mechanical properties, as they are widely believed to have improved properties than bulk due to minimization of defects. In this study we present an overall strategy for fabrication and mechanical characterization of polymeric fibers with diameters ranging from sub-50 nm to sub-microns. In the proposed fabrication strategy, polymeric solution is continuously pumped through a glass micropipette which is collected in the form of aligned fiber arrays on a rotating substrate. Polymer molecular weight and polymer solution concentration play dominant roles in controlling the fiber dimensions, which can be used to deposit fibers of different diameters in the same layer or successively built up multi-layer structures. Using this approach, we demonstrate single and multi-layer architectures of several polymeric systems such as Polystyrene (PS), Poly(methyl methacrylate) (PMMA), Poly lactic acid (PLA), and poly(lactic-co-glycolic acid) (PLGA). Further, we demonstrate the ability to manufacture PMMA fixed-free boundary condition cantilevers by breaking the fixed-fixed boundary condition PMMA fibers using Atomic Force Microscope (AFM) in the lateral mode. An integrated approach for mechanical characterization of polymeric fibers is developed. In this approach, the fibers are first deposited on commercially available Transmission Electron Microscopy (TEM) grids in aligned configurations and are mapped for accurate locations under the TEM. Subsequently, the fibers are carefully placed under the AFM and mechanically characterized for flexural modulus using lateral force microscopy (LFM). Finally, accurate fiber dimensions are determined under the Scanning Electron Microscope (SEM). The unique advantage of this approach lies in the ability to deposit a large number of fibers with tunable diameters in aligned configurations with fixed-fixed boundary conditions and requires no external manipulation. Finally, we present a novel methodology to study the resonance characteristics of fixed-fixed boundary condition suspended fibers using a commercially available Laser Doppler Vibrometer (LDV) for sensor applications. The methods developed in this study will greatly aid in increasing our fundamental knowledge of polymeric materials at reduced lengthscales and allow integration of these one-dimensional building blocks in bottom-up assembly environments.
Skip Nav Destination
ASME 2008 International Mechanical Engineering Congress and Exposition
October 31–November 6, 2008
Boston, Massachusetts, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4874-6
PROCEEDINGS PAPER
Polymeric Micro/Nanofiber Manufacturing and Mechanical Characterization
Amrinder S. Nain,
Amrinder S. Nain
Carnegie Mellon University, Pittsburgh, PA
Search for other works by this author on:
Metin Sitti,
Metin Sitti
Carnegie Mellon University, Pittsburgh, PA
Search for other works by this author on:
Cristina Amon
Cristina Amon
University of Toronto, Toronto, ON, Canada
Search for other works by this author on:
Amrinder S. Nain
Carnegie Mellon University, Pittsburgh, PA
Metin Sitti
Carnegie Mellon University, Pittsburgh, PA
Cristina Amon
University of Toronto, Toronto, ON, Canada
Paper No:
IMECE2008-67955, pp. 295-303; 9 pages
Published Online:
August 26, 2009
Citation
Nain, AS, Sitti, M, & Amon, C. "Polymeric Micro/Nanofiber Manufacturing and Mechanical Characterization." Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 13: Nano-Manufacturing Technology; and Micro and Nano Systems, Parts A and B. Boston, Massachusetts, USA. October 31–November 6, 2008. pp. 295-303. ASME. https://doi.org/10.1115/IMECE2008-67955
Download citation file:
9
Views
0
Citations
Related Proceedings Papers
Related Articles
Tribological and Nanomechanical Properties of Unmodified and Crosslinked Ultra-High Molecular Weight Polyethylene for Total Joint Replacements
J. Tribol (April,2004)
Modeling Material-Degradation-Induced Elastic Property of Tissue Engineering Scaffolds
J Biomech Eng (November,2010)
Effervescent Atomization of Viscoelastic Liquids: Experiment and Modeling
J. Fluids Eng (June,2008)
Related Chapters
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Synthesis and Characterization of Carboxymethyl Chitosan Based Hybrid Biopolymer Scaffold
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Application Analysis and Experimental Study on Performance of Energy-Saving Electret Fiber
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)