Lattice dynamics calculations are used to investigate thermal transport in argon thin films with thicknesses ranging between one and ten nanometers. Quasi-harmonic lattice dynamics calculations are used to find the frequencies and mode shapes of non-interacting phonons. This information is then used as input for anharmonic lattice dynamics calculations, whereby we compute the frequency shift and lifetime of each phonon mode due to interactions with other phonons. The phonon frequencies, group velocities, and lifetimes determined with the lattice dynamics techniques are then used to compute the in-plane thermal conductivity of the thin films as a function of film thickness. The thermal conductivities predicted by the lattice dynamics methods are compared to predictions from molecular dynamics simulations. Differences in the phonon characteristics in thin films compared to bulk crystals are examined by comparing the contribution to the thermal conductivity as a function of frequency.

This content is only available via PDF.
You do not currently have access to this content.