Amphibious single wheel robot consists of a sharp-edged wheel actuated by a spinning flywheel for steering and a drive motor for propulsion. The spinning flywheel acts as a gyroscope to stabilize the robot and also can be tilted to achieve steering. In this paper, the kinematics of a single wheel robot in water, Gyrover, is analyzed and then a simple mechanism for driving it is proposed. In previous studies, Lagrange approach is used for hydrodynamic modeling of the robot. A nonlinear position controller is designed to bring the robot to any desired position. Based on the designed controller, a tracking controller is augmented to the robot. For simplicity the added mass effect has been neglected in hydrodynamic analysis. Since the robot under consideration is compact and slow enough, this assumption is not far from reality.

This content is only available via PDF.
You do not currently have access to this content.