This paper presents a complete numerical study of the aerothermodynamics of subsonic moderate Reynolds number microturbomachinery using 2D computational fluid dynamics (CFD) on 24 cascade geometries and covering over 2000 conditions. Profile and mixing losses, as well as deviation and heat transfer correlations are developed for use in mean-line analysis and design. Both losses and thermal transfer tend to increase with decreasing Reynolds number, Mach number, and throat width. Deviation follows large scale turbomachinery behavior but tends to increase with viscous effects. A slender cascade geometry using a modified profile is suggested, potentially increasing isentropic efficiency by as much as 15%. This work defines a solid foundation for the design of microturbines used in power microelectromechanical systems (MEMS), such as gas and steam microturbines with sub-millimeter-scale blade chords operating at moderate Reynolds numbers (100 < Rec < 2000).

This content is only available via PDF.
You do not currently have access to this content.