A three-dimensional computational simulation of an intermediate temperature planar, tri-layered solid oxide fuel cell is considered for steady incompressible fully developed laminar flow in the interconnect ducts of rectangular cross section, with uniform supply of volatile species (80% H2 + 20% H2O vapor) and oxidant (20% O2 + 80% N2) at the electrolyte surface. The governing equations of mass, momentum and energy conservation coupled with that for electrochemical species are solved computationally. The Darcy-Forchheimer model described the fuel and oxidant transport through the porous electrodes, where the flow is in thermal equilibrium with the electrolyte matrix. The anode-side triple phase boundary is computationally resolved to capture the electrochemical reaction that results in current and volumetric heat generation. Parametric effects of the interconnect design (contact area and channel size) on the variation of thermal-hydrodynamic and electrical performances of the cell are presented. These highlight the effect of the flow rate on the Nernst potential and, in turn, the variations in current density, temperature and mass/species distributions, flow friction factor, and convective heat transfer coefficient. Interconnect channels of different cross-section aspect ratio (width/depth ∼ 0.5–2.0) with electrode-interface-contract half widths for minimum and unchanged area specific resistance) are contrasted so as to evaluate the optimal overall electrical and convective cooling performance of the planar anode-supported SOFC.
Skip Nav Destination
ASME 2008 International Mechanical Engineering Congress and Exposition
October 31–November 6, 2008
Boston, Massachusetts, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4871-5
PROCEEDINGS PAPER
Computational Modeling of Planar SOFC: Effects of Volatile Species/Oxidant Mass Flow Rate and Electrochemical Reaction Rate on Convective Heat Transfer Available to Purchase
P. P. Venkata,
P. P. Venkata
University of Cincinnati, Cincinnati, OH
Search for other works by this author on:
M. A. Jog,
M. A. Jog
University of Cincinnati, Cincinnati, OH
Search for other works by this author on:
R. M. Manglik
R. M. Manglik
University of Cincinnati, Cincinnati, OH
Search for other works by this author on:
P. P. Venkata
University of Cincinnati, Cincinnati, OH
M. A. Jog
University of Cincinnati, Cincinnati, OH
R. M. Manglik
University of Cincinnati, Cincinnati, OH
Paper No:
IMECE2008-69249, pp. 745-752.2; 10 pages
Published Online:
August 26, 2009
Citation
Venkata, PP, Jog, MA, & Manglik, RM. "Computational Modeling of Planar SOFC: Effects of Volatile Species/Oxidant Mass Flow Rate and Electrochemical Reaction Rate on Convective Heat Transfer." Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C. Boston, Massachusetts, USA. October 31–November 6, 2008. pp. 745-752.2. ASME. https://doi.org/10.1115/IMECE2008-69249
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Modeling of Convective Heat and Mass Transfer Characteristics of Anode-Supported Planar Solid Oxide Fuel Cells
J. Fuel Cell Sci. Technol (May,2007)
Analysis of Intermediate Temperature Solid Oxide Fuel Cell Transport Processes and Performance
J. Heat Transfer (December,2005)
A Numerical Model Coupling the Heat and Gas Species’ Transport Processes in a Tubular SOFC
J. Heat Transfer (April,2004)
Related Chapters
Cubic Lattice Structured Multi Agent Based PSO Approach for Optimal Power Flows with Security Constraints
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
New Generation Reactors
Energy and Power Generation Handbook: Established and Emerging Technologies