It was recently shown by us that spherical particles floating on a fluid-fluid interface can be self-assembled, and the lattice between them can be controlled, using an electric field. In this paper we show that the technique can also be used to self assemble rod-like particles on fluid-fluid interfaces. The method consists of sprinkling particles at a liquid interface and applying an electric field normal to the interface, thus resulting in a combination of hydrodynamic (capillary) and electrostatic forces acting on the particles. A rod floating on the fluid interface experiences both a lateral force and a torque normal to the interface due to capillarity, and in the presence of an electric field, it is also subjected to an electric force and torque. The electric force affects the rods’ approach velocity and the torque aligns the rods parallel to each other. In the absence of an electric field, two rods that are initially more than one rod length away from each other come in contact so that they are either perpendicular or parallel to the line joining their centers, depending on their initial orientations. In the latter case, their ends are touching. Our experiments show that in an electric field of sufficiently large strength, only the latter arrangement is stable. Experiments also show that in this case the electric field causes the rods of the monolayer to align parallel to one another and that the lattice spacing of a self-assembled monolayer of rods increases.
Skip Nav Destination
ASME 2008 International Mechanical Engineering Congress and Exposition
October 31–November 6, 2008
Boston, Massachusetts, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4871-5
PROCEEDINGS PAPER
Self-Assembly of Rod-Like Particles Into 2D Lattices
M. Janjua,
M. Janjua
New Jersey Institute of Technology, Newark, NJ
Search for other works by this author on:
S. Nudurupati,
S. Nudurupati
New Jersey Institute of Technology, Newark, NJ
Search for other works by this author on:
I. Fischer,
I. Fischer
New Jersey Institute of Technology, Newark, NJ
Search for other works by this author on:
P. Singh,
P. Singh
New Jersey Institute of Technology, Newark, NJ
Search for other works by this author on:
N. Aubry
N. Aubry
Carnegie Mellon University, Pittsburgh, PA
Search for other works by this author on:
M. Janjua
New Jersey Institute of Technology, Newark, NJ
S. Nudurupati
New Jersey Institute of Technology, Newark, NJ
I. Fischer
New Jersey Institute of Technology, Newark, NJ
P. Singh
New Jersey Institute of Technology, Newark, NJ
N. Aubry
Carnegie Mellon University, Pittsburgh, PA
Paper No:
IMECE2008-68048, pp. 169-177; 9 pages
Published Online:
August 26, 2009
Citation
Janjua, M, Nudurupati, S, Fischer, I, Singh, P, & Aubry, N. "Self-Assembly of Rod-Like Particles Into 2D Lattices." Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C. Boston, Massachusetts, USA. October 31–November 6, 2008. pp. 169-177. ASME. https://doi.org/10.1115/IMECE2008-68048
Download citation file:
5
Views
0
Citations
Related Proceedings Papers
Related Articles
Fast Organic Conditioning of Patterned Surfaces for Capillary Part-to-Substrate Self-Assembly
J. Electron. Packag (December,2010)
Dynamic Self-Assembly of Spinning Particles
J. Fluids Eng (April,2007)
Detailed Description of Electro-Osmotic Effect on an Encroaching Fluid Column Inside a Narrow Channel
J. Fluids Eng (September,2018)
Related Chapters
Motion of Charged Bodies in an Electric Field
Dynamics of Particles and Rigid Bodies: A Self-Learning Approach
Fans and Air Handling Systems
Thermal Management of Telecommunications Equipment
Introduction
Bacteriophage T4 Tail Fibers as a Basis for Structured Assemblies