We have investigated aggregation phenomena of a colloidal dispersion composed of magnetic plate-like particles by means of Monte Carlo simulations. Such plate-like particles have been modeled as disk-like particles which have a magnetic moment normal to the particle axis at the particle center, with the section shape of a spherocylinder. The main objective of the present study is to clarify the influences of magnetic field strength and magnetic interactions between particles on particle aggregation phenomena. We have concentrated our attention on a quasi-2D system from an application point of view such as development of surface changing technology using such magnetic plate-like particles. A magnetic field was applied along a direction perpendicular to the plane of the monolayer. Internal structures of particle aggregates have been discussed quantitatively in terms of radial distribution and orientational pair correlation functions. The main results obtained here are summarized as follows. For the case of strong magnetic interactions between particles, the particles form long column-like clusters with their magnetic moments alternating in direction between the neighboring particles. These tendencies appear under circumstances of a weak applied magnetic field. However, as the magnetic field strength increases, the particles incline toward the magnetic field direction, so that the particles do not form such clusters.

This content is only available via PDF.
You do not currently have access to this content.