Thermal-flow-elastic coupling (TFEC) numerical simulation platform has been an essential platform for designing turbo engines with high performance and efficiency. Generally, TFEC numerical simulation was achieved by predicting thermal and stress fields with finite element methods, while flow fields with finite difference methods, but such calculation was not popular in engineering design, because of too much size of data exchange and lower computing efficiency. However these shortcomings will not exist by using finite difference methods for all of the fields. To establish a three dimensional multifunction numerical simulation platform for turbines for all of the fields, the key technique was studied firstly. The technique included analysis on physical models, establishing of mathematical model equation, usage of curvilinear coordinate platform, construction of high accuracy difference scheme and selection of boundary conditions for multi-field coupling simulation. Then the algorithm including domain decomposition one and parallel one were studied to accelerate the coupling simulation. The purpose was to develop a completed TFEC numerical simulation platform by using of finite difference method and to apply the platform for numerical simulation in turbines. Firstly codes for predicting flow field in passage, thermal and stress fields in solid body were developed. Then a simple TFEC numerical simulation platform for turbines was obtained. The single code for predicting flow field was verified with experimental data, and the other two codes were validated with thermal and elastic analytic solutions respectively. And satisfying results were obtained. Then the code for thermal-flow was validated with experimental data of Mark II blade, and the code for thermal-elastic coupling simulations was validated with a cylinder by an analytic solutions. All of these are good basics for completing TFEC numerical simulation platform using finite difference methods for all of the fields and computing TFEC numerical simulation in a turbo engine.

This content is only available via PDF.
You do not currently have access to this content.