Statics, Dynamics, and Mechanics of Materials form the basic sequence of engineering mechanics courses in engineering curricula. Traditionally, these courses have been designated as “engineering science” courses with significantly more emphasis in analysis to reinforce engineering fundamentals, and little to no importance to “engineering design”. With the outcome based approach to undergraduate engineering education adopted by Accreditation Board of Engineering and Technology and the framework laid out by Engineering Criteria (EC 2000) significant reform efforts are underway to incorporate design experience throughout the engineering curricula. Most engineering programs across the nation have developed and implemented a freshman design course to introduce engineering design at the beginning of the college experience for engineering majors. To sustain the momentum, it therefore follows that subsequent courses should sustain the design emphasis in the freshman and sophomore years. Design, however, is a time consuming complex iterative process somewhat different from the convergent nature of engineering science. Modern software tools provide a time efficient and pedagogically effective way of integrating engineering design project with the engineering mechanics sequence without compromising the engineering science fundamentals. In this paper design projects that have been integrated in Statics, Dynamics, and Mechanics of Material courses offered by the author using software tools such as Working Model, MD-Solids, Pro-Engineer, Solid-works etc. supplemented by computational tools such as MATLAB and EXCEL are outlined. Discussion based on student feedback and relevance to ABET outcomes is also forwarded.

This content is only available via PDF.
You do not currently have access to this content.