This work presents the analysis of a non-isothermal three-dimensional model in single phase of a PEM fuel cell with an innovative flow field path in the form of the Fermat spiral, i.e. two concentric spirals. The model is used to predict the current density contours and the water content in all of the zones of the fuel cell. The three-dimensional model includes: the gas flow channels with the shape of the new geometry proposed, the current collectors, gas diffusion layers, catalyst layers on both sides of the model, anode and cathode, and a proton exchange membrane in between. The model solves the energy equation, mass conservation, and species transport equations, including the source terms due the electrochemical effects occurring in the cell. The results show a higher average current density than the fuel cells with conventional flow paths, showing also that the current density attained is more uniform from the inlet to the outlet of the flow channels.

This content is only available via PDF.
You do not currently have access to this content.