An often used approach to the synthesis/design optimization of energy systems is to only use steady state operation and high efficiency (or low total life cycle cost) at full load as the basis for the synthesis/design. Transient and partial load operations are considered secondarily by system and control engineers once the synthesis/design is fixed (i.e. system testing with standard load profiles). This paper considers the system dynamics from the very beginning of the synthesis/design process by developing the system using a set of transient thermodynamic, kinetic, geometric as well as cost models developed and implemented for the components of a 5 kW PEMFC (Proton Exchange Membrane Fuel Cell) system. The system is composed of three subsystems: a stack subsystem (SS), a fuel processing subsystem (FPS), and a work and air recovery subsystem (WRAS). In addition, state space is used in a looped set of optimizations to illustrate the effect of the control system on the synthesis/design optimization and to develop a set of optimal multi-input, multi-output (MIMO) controllers consistent with the optimal synthesis/design of the PEMFC system. It is shown that these MIMO controllers correspond to the ones found in a non-looped optimization in which the gains for the controllers are part of the decision variable set for the overall synthesis/design and operation/control optimization. These last set of results are then compared with the optimizations results found with the traditional approach of using a single load point in order to show the advantage of the dynamic optimization.

This content is only available via PDF.
You do not currently have access to this content.