From the time mechanical refrigeration was first introduced, its use has significantly increased. In general, cooling is achieved with vapor compression machines that use specific refrigerants (blends of hydrogen, carbon, fluorine and chlorine in various mixing ratios) that can be tailored to create cooling at any required temperature level. Each refrigerant exhibits a specific global warming potential and ozone depletion potential in the atmosphere by absorbing infrared radiation and breaking down of ozone molecules. Since the adverse effects of those substances have been discovered, the field of refrigeration has been moving away from conventional refrigerants, and searching for better alternatives. Thermoacoustic refrigeration is such an alternative that can provide cooling to essentially any required temperature level without using any environmentally harmful substances. It is presently a niche technology that can be expanded into a broader market, primarily if the sizing problem can be solved. Currently, the most efficient thermoacoustic refrigerators are used in industrial settings. This work explores the possibility of decreasing the footprint of these refrigerators by utilizing a coiled resonator. A CFD analysis has been developed and first results in regard to coiled resonators are shown and discussed.

This content is only available via PDF.
You do not currently have access to this content.