In this study, an analytical model to obtain a closed-form solution for thermomechanical behaviours of BGA (Ball Grid Array) package was derived and experimentally validated. In the theoretical analysis, the BGA package was represented by a three-layer axisymmetrical model: two layers of dissimilar materials jointed by a graded interlayer. Based on the classical bending theory, the thermal stresses induced by temperature changes were calculated accurately. 2-D FE (Finite Element) meshes of BGA packages subjected to high temperature were used to verify the theoretical solutions. Furthermore, two types of BGA samples, each with eutectic (63wt%Sn/37wt%Pb) and Pb-free SAC387 (95.5wt%Sn/3.8wt%Ag/0.7wt%Cu) solder joints respectively, were experimentally investigated by high resolution Moire´ Interferometry (MI). Thermal cycling tests were performed on each package with temperature variation from 25°C to 125°C. It was found that the thermal deformation obtained from moire´ tests matched well with those from analytical solutions and FE analyses. Based on the shear strain values, the reliability characteristics of BGA assemblies were also assessed.

This content is only available via PDF.
You do not currently have access to this content.