In this paper, single solder joints (SSJs) were subjected to moderate speed loading (5mm/sec) in different directions, from pure tensile, mixed mode to pure shear. Fracture surfaces from different loading directions were examined both experimentally and numerically. It is observed that intermetallic compound (IMC) is formed between the solder alloy and the Cu pad, and failure typically occurs at or near the solder/IMC/Cu interfaces on the board side. Pure tensile loading typically leads to interfacial fracture along the IMC/Cu interface. Mixed mode loading usually results in a mixture of interfacial and cohesive failure with crack propagating in a zigzag fashion between the solder/IMC interface and the solder alloy. Loading with higher shear component tends to result in more cohesive failure of the solder alloy near the solder/IMC interface. Under pure shear loading, failure is almost always cohesive within the solder alloy near the solder/IMC interface.

This content is only available via PDF.
You do not currently have access to this content.