It has been hypothesized that collagen fibrils in native tissue are “strain-stabilized” and thus protected (to some extent) from enzyme attack by the application of mechanical load. If true, collagen and its complement native enzymes (MMPs) could comprise the basis of “smart” structure which is intrinsically load-adaptive. If strain protection of collagen significantly reduces the activity of bacterial collagenase (BC-Clostridium Histolyticum), then benchtop “sculpting” of collagenous matrix for tissue engineering may be practical. In this investigation, we have quantified the enzymatically-induced creep of uniaxially-loaded (0.25 N) and unloaded control bovine corneal tissue strips (∼6.0 mm × 0.7 mm × 17 mm) which were exposed to BC (0.05 mM). Experimental and control strips were loaded for 15 minutes (initial creep-in) then exposed to the BC at which point the controls were unloaded. After 35 minutes of degradation, unloaded controls were re-loaded and the dynamic strain was recorded. All unloaded control specimens were significantly compromised mechanically compared to experimentals and could not hold the applied load for more than a few minutes following reloading. From the data is clear that strain protects the loaded fibrils. How that protection is manifested remains an open question.
Skip Nav Destination
ASME 2008 International Mechanical Engineering Congress and Exposition
October 31–November 6, 2008
Boston, Massachusetts, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4863-0
PROCEEDINGS PAPER
Influence of Mechanical Load on Enzymatic Cleavage of Native Collagen
Ramin Zareian,
Ramin Zareian
Northeastern University, Boston, MA
Search for other works by this author on:
Jeffrey W. Ruberti
Jeffrey W. Ruberti
Northeastern University, Boston, MA
Search for other works by this author on:
Ramin Zareian
Northeastern University, Boston, MA
Jeffrey W. Ruberti
Northeastern University, Boston, MA
Paper No:
IMECE2008-68117, pp. 575-583; 9 pages
Published Online:
August 26, 2009
Citation
Zareian, R, & Ruberti, JW. "Influence of Mechanical Load on Enzymatic Cleavage of Native Collagen." Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 2: Biomedical and Biotechnology Engineering. Boston, Massachusetts, USA. October 31–November 6, 2008. pp. 575-583. ASME. https://doi.org/10.1115/IMECE2008-68117
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
A Nonlinear Anisotropic Viscoelastic Model for the Tensile Behavior of the Corneal Stroma
J Biomech Eng (August,2008)
Microstructure and Mechanics of Collagen-Fibrin Matrices Polymerized Using Ancrod Snake Venom Enzyme
J Biomech Eng (June,2009)
Mechanical Characterization of Differentiated Human Embryonic Stem Cells
J Biomech Eng (June,2009)
Related Chapters
Synthesis and Characterization of Carboxymethyl Chitosan Based Hybrid Biopolymer Scaffold
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Advantages of Chitosan as Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Conclusions
Chitosan and Its Derivatives as Promising Drug Delivery Carriers